Downstream intronic splicing enhancers
نویسندگان
چکیده
منابع مشابه
Intronic Alus Influence Alternative Splicing
Examination of the human transcriptome reveals higher levels of RNA editing than in any other organism tested to date. This is indicative of extensive double-stranded RNA (dsRNA) formation within the human transcriptome. Most of the editing sites are located in the primate-specific retrotransposed element called Alu. A large fraction of Alus are found in intronic sequences, implying extensive A...
متن کاملNova regulates GABA(A) receptor gamma2 alternative splicing via a distal downstream UCAU-rich intronic splicing enhancer.
Nova is a neuron-specific RNA binding protein targeted in patients with the autoimmune disorder paraneoplastic opsoclonus-myoclonus ataxia, which is characterized by failure of inhibition of brainstem and spinal motor systems. Here, we have biochemically confirmed the observation that splicing regulation of the inhibitory GABA(A) receptor gamma2 (GABA(A)Rgamma2) subunit pre-mRNA exon E9 is disr...
متن کاملAn Alu-derived intronic splicing enhancer facilitates intronic processing and modulates aberrant splicing in ATM
We have previously reported a natural GTAA deletion within an intronic splicing processing element (ISPE) of the ataxia telangiectasia mutated (ATM) gene that disrupts a non-canonical U1 snRNP interaction and activates the excision of the upstream portion of the intron. The resulting pre-mRNA splicing intermediate is then processed to a cryptic exon, whose aberrant inclusion in the final mRNA i...
متن کاملSplicing fidelity, enhancers, and disease.
Eukaryotic pre-mRNA splicing allows for a large, diverse proteome to be coded by a relatively small genome. Alternative splicing events are well regulated, but when mutations disrupt the splice sites or regulatory elements, disease can occur. Similarly, mutations can cause disease through aberrant transcript production. Enhancers, one of the splicing regulatory elements, are frequent targets of...
متن کاملDepletion of TDP 43 overrides the need for exonic and intronic splicing enhancers in the human apoA-II gene
Exon 3 of the human apolipoprotein A-II (apoA-II) gene is efficiently included in the mRNA although its acceptor site is significantly weak because of a peculiar (GU)16 tract instead of a canonical polypyrimidine tract within the intron 2/exon 3 junction. Our previous studies demonstrated that the SR proteins ASF/SF2 and SC35 bind specifically an exonic splicing enhancer (ESE) within exon 3 and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: FEBS Letters
سال: 2007
ISSN: 0014-5793
DOI: 10.1016/j.febslet.2007.08.012